x射线荧光光谱仪辐射 X光谱分析仪
  • x射线荧光光谱仪辐射 X光谱分析仪
  • x射线荧光光谱仪辐射 X光谱分析仪
  • x射线荧光光谱仪辐射 X光谱分析仪

产品描述

能量分辨率144±5eV 测量对象元素含量 测量范围N-U 测量精度1ppm 适用范围电子电器、金属、塑料、涂料 探测器SDD 含量范围ppm--99.99% 电源电压220V 分析时间200秒左右 检测限1ppm(基材不同有所变化)
测量元素范围:硫(S)~铀(U)
测量时间:1s或以上
检出限:分析检出限可达2ppm,薄可测试0.005μm
含量范围:2ppm~99.9%
稳定性:0.02%
管压:5~50KV
管流:≤1000uA
探测器:X-SDD探测器,分辨率可达125eV
准直器:8种准直器自动切换
滤光片:4种滤光片自由切换
样品观察:高清工业摄像头
环境湿度:≤70%
环境温度:15℃~30℃
电源:交流220V±5V(建议配置交流净化稳压电源)
x射线荧光光谱仪辐射
X荧光光谱仪对玻璃行业的进厂原料、玻璃成品的元素组成成份具有很好的分析效果。这里以WDX系列X荧光光谱仪对玻璃行业进厂原料(石灰石、白云石)及玻璃成品的重复性测试为例,介绍玻璃行业的应用解决方案。
(一)石灰石的重复性测试
实验条件:
阳材料:Rh;管压:45kV;管流:3.5mA;定量分析方法:经验系数法
应用领域
X 荧光检测技术具有快速、、无损的特点。X 荧光分析仪可以应用于任何需要分析Na 以上到U的元素或化合物成分分析的领域,如:电子电器〔RoHS 检测)、珠宝饰、贵金属及镀层检测)、玩具安全(EN71—3)、建材(水泥、玻璃、陶瓷)、冶金(钢铁、有色金属)、石油(微量元素S 、Pb 等)、化工、地质采矿、商品检验、质量检验甚至人体微量元素的检验等等。是常量分析和微量分析的可靠工具,在大专院校和科研单位也是常备仪器。
应用领域
X荧光光谱仪有着广泛的应用领域,如建材(水泥、玻璃、陶瓷等)、钢铁、有色金属、矿业、地质、化工、石油、质量检验、商品检验等。
应用领域
X荧光光谱仪可以广泛的应用到建材(水泥、玻璃、陶瓷等) 、钢铁、有色金属、矿业、地质、化工、石油、质量检验、商品检验、环境保护 等领域。
X荧光光谱仪
应用领域
玻璃、钢铁、有色金属检测、水泥检测、矿料分析。
X荧光光谱仪
应用领域
玻璃行业、电子电器行业、电镀行业、各种材质、塑胶、木头等等物质中的元素检测,电镀行业检测
x射线荧光光谱仪辐射
粉末压片制样法主要分三步:干燥焙烧、混合研磨、压片。有粉末直接压片、粉末稀释压片、用粘结剂衬底和镶边等方法。
①结剂、助磨剂及其他添加剂
当样品本身的粘结力较小时,选择一种合适的粘结剂很重要。粘结剂有固体和液体两种,常用的固体粘结剂有、甲基纤维素、聚乙烯、石蜡、淀粉、滤纸或色谱纸浆、碳酸锂等。用石蜡和苯乙烯的混合物作粘结剂。粘结剂的加入量为样品的10%-50%,过多会影响轻元素的检出限。粘结剂的加入会使分析线强度下降,如果粘结剂颗粒度较大,还会引入颗粒度效应。从吸水性、样品的坚固性、抽真空时间、对仪器污染、制样成功率、成本等方面对几种常用的粘结剂作了比较, 得出低压聚乙烯是一种较理想的粘结剂。
液体粘结剂有、聚乙烯醇(PVA)等。使用液体粘结剂易制成均匀、重复性好的压片,制得的样片更加坚固耐用。
在制备试样和标样过程中,除粘结剂外,还可加入助磨剂、内标元素、稀释剂等,液体粘结剂或助磨剂的大优点是不用称量,但压片后要烘干,加入的量也不可过多,一般100g样品中加入几毫升到十几毫升。固体粘结剂和助磨剂等需要准确称量,并且要混合均匀,因此,制样较麻烦,如果加上清洗粉碎容器的时间,有时甚至比熔融法更长。在大批量的分析中,多采用直接压片或衬底压片法。
②粉碎技术
可用玛瑙或碳化钨研钵人工研磨,现在较多使用机械振动磨或球磨机,效率很高。一般样品均可粉碎至74μm以下(通过200目筛子),好的可以达到20μm左右。随着粉碎时间的延长,颗粒度减小到一定程度不再变细,如果继续粉碎,反而会发生“团聚”现象。要提高粉碎效率,可以加入固体或液体助磨剂。粉碎时间越长,粉碎容器带来的污染越严重,因此,选择一种合适的粉碎容器很重要。要比较这种污染,可以分析一种很硬的物质(如石英)经粉碎后的污染情况,或对比两种不同粉碎方法的分析结果。在分析痕量元素时,为了提高分析的灵敏度和准确度,这是非常必要的。还有一种污染,是不同粉碎试样间的相互污染。每次粉碎后都要保证容器清洗干净,当样品量较多时,粉碎前可用少量样品预“清洗”两次。
③压片
压样设备常见的有手动或电动液压机,粉末样品装入铝杯或铝环(或塑料环)中,在相应的模具中加压成型。在真空光谱仪中,粉末压片可能会含有空气或其它气体而发生溅射,既破坏了试样表面,又污染了样品室。可先在真空中压制成块,或在氦气光路中测量。为了减少压入片内空气的量,在装样时可轻拍样品,加压时要逐步压力,同时还要保压一定的时间。X荧光光谱仪分析是一种表面分析,尤其对于轻元素,分析时有效层厚度只有几个至十几个μm,表面的污染是致命的问题,同时还要求表面平滑。所以每次压片后都要把模具的表面洗净,隔一段时间还要对塞柱表面(对应于样片被测面)适当抛光。试样在保存过程中也要防止表面污染、表面破损、吸潮、氧化、吸附空气等。好是压片后尽快测量,对于标样、管理样等需长期保存的试样,以粉末状态密封保存较好,需要时临时压片。
④标准样品的制备
X荧光光谱仪分析是一种相对分析,标准样品的制备直接影响分析的准确度。粉末压片法的标样来源主要有三个:用其他方法分析试样;在成分已知的标样中加入某些成分;人工合成。
x射线荧光光谱仪辐射
X荧光光谱技术的发展
1959年我国从苏联引入了照相式X荧光光谱仪,这是中国次引进X荧光光谱分析仪。 1895年,德国物理学家伦琴发现了X射线。 1896年,法国物理学家乔治发现了X射线荧光。 1948年,弗里德曼和伯克斯研制了台商品性的波长色散X射线荧光光谱仪。
1969年,美国海军实验室研制真正意义上的EDXRF光谱仪。从上面的X荧光光谱仪的初始发展过程来看,荧光光谱分析仪这项技术比较年轻,从发现X射线荧光到出现X射线荧光光谱分析仪都不过一**,后应用到各种领域中的时间也才几十年。同样,我国X荧光光谱分析也是光谱分析领域中较年轻的分析手段之一,1959年,我国请苏联来华在应化所举办了x光谱学习班,随后,我国不断开展X荧光光谱学习班,为之后中国X荧光光谱分析技术打好了基础。
1981年,我国X光谱分析工作者出版了自己编著的书籍,由此可见,在这些年中,我国研究X荧光光谱的学者们做了不少的工作。
从上,我们知道了很多厂家都喜欢购买进口光谱仪,还了解我国引进台X荧光光谱仪后的发展,明明前后研制的时间差不多,几年的差距为什么技术差别那么大,我们是否真正克服了这项技术。1959年,我国研制了台X荧光光谱分析仪,但是这是大型的X荧光光谱分析仪(我们现在购买的X荧光仪器都是手持式的,方便易携带)。当年有单位购买了国产的大型X荧光光谱仪后,不仅所发挥的作用不大,还经常发生故障,不能充分发挥作用,因此,我国X荧光光谱分析发展受到了影响,大部分工作还是用进口仪器完成。 在X荧光光谱仪的研制与投产上学者与研制者们集聚力量,对X荧光光谱技术进行分析,之后的成果斐然。北京师范大学在X荧光光谱分析在表面微区,微试样的分析中做出了开创性的工作。王燕,赵敏等学者对X荧光强度与含量的线性关系进行了分析,并对定量分析方法进行了模拟运算,总结了优的计算方法。周云泷等学者通过计算机软件分析计算,对一些微量元素进行分析,达到较为满意的分析结果。之后的一些研究因篇幅原因不再一一概述,但之后越来越多的学者们都为X荧光光谱分析付出了努力。
http://rohsyiqi.b2b168.com
产品推荐

Development, design, production and sales in one of the manufacturing enterprises

您是第801982位访客

版权所有 ©2025 八方资源网 粤ICP备10089450号-8 江苏天瑞仪器股份有限公司 保留所有权利.

技术支持: 八方资源网 八方供应信息 投诉举报 网站地图