能量分辨率144±5eV
测量对象元素含量
测量范围N-U
测量精度1ppm
适用范围电子电器、金属、塑料、涂料
探测器SDD
含量范围ppm--
电源电压220V
分析时间200秒左右
检测限1ppm(基材不同有所变化)
1、压片法压片法是将经过粉碎或研磨的样品加压成形的制样方法。压片法的制样流程粉末样品加压成型
(1)优点:
①制样简便,速度快,适合大生产和快速分析
②制样设备简单,主要是磨粉机,压片机和模具等。
③可用于标准加入法和高、低倍稀释以减少基体效应。
④比起松散样品,将粉末样品压片能减小表面效应和提高分析精度。
(2)不足:不能有效消除矿物效应和完全克服粒度效应。一般用于控制生产,而不用于样品成分的定值。
(3)制样过程中应注意的事项:
①样品要烘干。
②样品经过粉碎要达到一定的粒度并均匀。
③标准样品和分析样品制样时的压力和保压时间要一致。
④卸压速度不要太快,要匀速下降。
⑤保持粉碎的容器和压片的模具清洁,防止样品间的相互沾污。
⑥装料密度要一致。
可以采用以下方法来减少粒度效应:
①研细到不存在粒度效应的程度;
②对所有试样和标样采用标准化的研磨方法,使它们基本上具有相同的粒度或粒度分布;
③干法稀释。稀释剂粉末与含有分析元素的颗粒对初级和分析线束的质量吸收系数好要相似;
④在高压力下压制成块;
⑤数学方法校正;
(4)助研磨剂助研磨剂的作用主要是提高研磨效率及克服细磨时的附聚现象,提高均匀性和防止样品在粉碎时粘附在粉碎容器上。
常用的助研磨剂有:
② 体的如、乙二醇、三胺和正己烷等,具有可烘干易挥发的优点;
②固体的如各种硬脂酸等。另外,助研磨剂还能减少和延迟在粉碎和研磨过程中样品颗粒的重新团聚现象。
(5)粘结剂粘结剂的主要作用是使一些内聚力比较差的粉末样品在制样中增加粘结性能。加入粘结剂有以下几个优点:
①内聚力很低的粉末也可以制成结实的压块;
②对粒度和密度不均匀的粉末加入粘结剂,装样时和压片时可得到较好均匀性;
③可以得到较高的堆积密度和较光滑的表面;
④由于稀释,减少了吸收-增强效应。但是加入粘结剂也有一些缺点,由于加入的粘结剂大多是轻基体,低吸收稀释剂,能减少基体效应。但会使散射背景有所增加,另外分析元素的测量强度会有所下降,对痕量元素不利,使轻元素的灵敏度下降。同时,制样时间有所增加。常用固体的粘结剂有甲基纤维素、微晶纤维素、、低压聚乙烯、石蜡、淀粉、干纸浆粉等;常用的液体粘结剂有,其优点是液体可以挥发,样品中的残留量可忽略。使用粘结剂要注意其纯度,不能含有明显的干扰元素;且性质稳定不易吸潮、风干,经X 射线照射不易破碎;必须定量加入,加入量一般为总重量的2%~10%。
(6)添加剂为了校正吸收-增强效应可添加内标。内标的粒度必须与试样粒度相同,或者把它们掺到一起再进行研磨。好是以溶液形式加入内标,即可把内标溶液与试样粉末均匀混合起来。为减少吸收-增强效应,可添加低吸收稀释剂,如碳酸锂,,碳,淀粉等,对于轻基体分析元素的粉末样品,为使校准曲线加接近直线,可添加高吸收缓冲剂,如氧化镧或钨酸。为便于研磨,可添状惰性磨料,如氧化铝,碳化硅。用研钵研磨粉末时,经常使用这种方法。如果待混合的种粉末的粒度都很小,或它们的粒度、形状、密度都基本相同,则可直接以干粉形式进行混合;如果粉末较粗,或粒度和形状不同,则必须在混合前分别加以研磨,或者混合后一起加以研磨。如果密度差别很大,则可以把一定体积的重成分标准溶液加入经过称重的轻成分粉末。
(7)衬底为避免粘结剂的加入降低强度,或只有少量的粉末样品时,可采用镶边衬底压片。
(8)研磨工具可用玛瑙、碳化硅、碳化硼研钵进行手工研磨。可以干磨,也可以加入或,研磨至干,如此反复几次。好还是用磨样机进行研磨。压片时,粒度越小,分析线强度就越高;粒度一定时,压力越高,分析线强度就越高。使用粘结剂或稀释剂,会使强度随粒度增加而减小的效应变得明显,而使强度随压力而的效应变弱。

X射线荧光光谱仪(XRF)具有谱线简单、不破坏样品、操作简便、测定迅速等优点,广泛应用于地质、冶金、采矿、有色、海洋、生化、环境、石化、商检、电子、、考古、难融化物和建材工业等领域。但因为XRF操作简便的优点,使得现在一些“不求甚解”的使用者,只会使用,缺乏对于XRF的基础知识。你得懂XRF的原理么?你知道XRF的分类么?你知道各类XRF有什么优势么?
下面为大家一一解答:
XRF的原理是什么?
X射线荧光(XRF),顾名思义,利用了X射线和荧光技术,当原级X射线照射在待测样品上,产生的次级X射线叫X射线荧光,通过分析荧光的波长和能量对物质进行成分和化学形态的分析。XRF理论上可以测定元素周期表中所有的元素,但是在实际应用中,一般有效的元素测量范围为从铍(Be)到铀(U)的90余种元素。
XRF的分类有哪些?
XRF根据原理不同主要分为两类:波长色散型(WD-XRF)和能量色散型(ED-XRF),其根本区别在于检测方法的不同:
波长色散型X射线荧光光谱仪(WD-XRF),简称为波散型XRF,其原理是将X射线荧光通过晶体或人工拟晶体将不同能量的谱线分开,然后进行检测。通过谱线的波长进行定性分析,通过能量的强度进行定量分析。
波散型XRF
能量色散型X射线荧光光谱仪(ED-XRF),简称能散型XRF,没有复杂的分光系统,X射线荧光直接进入探测器,再经放大器放大成形后进入多道脉冲幅度分析器,将不同能量的脉冲分开并处理,就可以对能量范围很宽的X射线谱同时进行能量分辨(定性分析)和定量测定。

X荧光光谱热电的仪器,检测口放一铜片的作用?
(1) 有的手持式的在头部装有一个校正的样品,同时在不用的时候也可以保护X射线发射源。
(2) 铜块作用一是作能量校正,二是在不测其它样品时挡住窗口起保护作用。
22.为什么X射线荧光测定压片样中的Sb含量时样片厚度有影响?
(1) 原子序数较低的元素(或基体)对能量较高的谱线吸收系数较低,因此无限厚度也就大一点
(2) Sb的K线能量较高,能穿透厚的样品(相对本样品中的其他元素的特征射线),所以饱和厚度也就比其他元素厚。
23.进行合金分析的时候,比如测定硅锰中的si时,用什么进行校正要好些呢?
(1) 用含Si量接近待测合金中Si含量的合金标样校正。
(2) 基体校正这个说法不正确。如果说基体校正的话,我想你所做的试样中只有锰和铁能对其构成基体上的影响。
实际上,你可能是由于线性不好,所以觉得应该做“基体校正”。
原因是:
A、可能是定值还得在准确一些。
B、制样上的偏差比较大。
其中二条比较主要。那没有办法,自己解决。

测量元素范围:从钠(Na)到铀(U)
元素含量分析范围: ppm—(不同元素,分析范围不同)
同时分析元素:一次性可测几十种元素
测量时间:60秒-200秒
能量分辨率为:(140±5)eV
管压:5KV-50KV
管流:50uA-1000uA
http://rohsyiqi.b2b168.com